Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
JMIR Public Health Surveill ; 7(6): e28265, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-2197911

ABSTRACT

BACKGROUND: Despite the limitations in the use of cycle threshold (CT) values for individual patient care, population distributions of CT values may be useful indicators of local outbreaks. OBJECTIVE: We aimed to conduct an exploratory analysis of potential correlations between the population distribution of cycle threshold (CT) values and COVID-19 dynamics, which were operationalized as percent positivity, transmission rate (Rt), and COVID-19 hospitalization count. METHODS: In total, 148,410 specimens collected between September 15, 2020, and January 11, 2021, from the greater El Paso area were processed in the Dascena COVID-19 Laboratory. The daily median CT value, daily Rt, daily count of COVID-19 hospitalizations, daily change in percent positivity, and rolling averages of these features were plotted over time. Two-way scatterplots and linear regression were used to evaluate possible associations between daily median CT values and outbreak measures. Cross-correlation plots were used to determine whether a time delay existed between changes in daily median CT values and measures of community disease dynamics. RESULTS: Daily median CT values negatively correlated with the daily Rt values (P<.001), the daily COVID-19 hospitalization counts (with a 33-day time delay; P<.001), and the daily changes in percent positivity among testing samples (P<.001). Despite visual trends suggesting time delays in the plots for median CT values and outbreak measures, a statistically significant delay was only detected between changes in median CT values and COVID-19 hospitalization counts (P<.001). CONCLUSIONS: This study adds to the literature by analyzing samples collected from an entire geographical area and contextualizing the results with other research investigating population CT values.


Subject(s)
COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19/epidemiology , Hospitalization/statistics & numerical data , Adult , COVID-19/transmission , Female , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Texas , Time Factors
2.
Nat Comput ; 21(3): 449-461, 2022.
Article in English | MEDLINE | ID: covidwho-2014308

ABSTRACT

In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the indirect protection given by immune individuals to susceptible individuals. Here we describe the estimates of the collective immunity to COVID-19 from a stochastic cellular automaton based model designed to emulate the spread of SARS-CoV-2 in a population of static individuals interacting only via a Moore neighbourhood of radius one, with a view to analyze the impact of initially immune individuals on the dynamics of COVID-19. This impact was measured by comparing a progression of initial immunity ratio-the percentage of immunised individuals before patient zero starts infecting its neighbourhood-from 0 to 95% of the initial population, with the number of susceptible individuals not contaminated, the peak value of active cases, the total number of deaths and the emulated pandemic duration in days. The influence of this range of immunities over the model was tested with different parameterisations regarding the uncertainties involved in the model such as the durations of the cellular automaton states, the contamination contributions of each state and the state transition probabilities. A collective immunity threshold of 55 % ± 2.5 % on average was obtained from this procedure, under four distinct parameterisations, which is in tune with the estimates of the currently available medical literature, even increasing the uncertainty of the input parameters.

SELECTION OF CITATIONS
SEARCH DETAIL